Lipschitz Functions on Expanders are Typically Flat
نویسندگان
چکیده
This work studies the typical behavior of random integer-valued Lipschitz functions on expander graphs with sufficiently good expansion. We consider two families of functions: M -Lipschitz functions (functions which change by at most M along edges) and integer-homomorphisms (functions which change by exactly 1 along edges). We prove that such functions typically exhibit very small fluctuations. For instance, we show that a uniformly chosen M -Lipschitz function takes only M+1 values on most of the graph, with a double exponential decay for the probability to take other values.
منابع مشابه
Lectures on Lipschitz Analysis
(1.1) |f(a)− f(b)| ≤ L |a− b| for every pair of points a, b ∈ A. We also say that a function is Lipschitz if it is L-Lipschitz for some L. The Lipschitz condition as given in (1.1) is a purely metric condition; it makes sense for functions from one metric space to another. In these lectures, we concentrate on the theory of Lipschitz functions in Euclidean spaces. In Section 2, we study extensio...
متن کاملGrounded Lipschitz functions on trees are typically flat
A grounded M -Lipschitz function on a rooted d-ary tree is an integer-valued map on the vertices that changes by at most M along edges and attains the value zero on the leaves. We study the behavior of such functions, specifically, their typical value at the root v0 of the tree. We prove that the probability that the value of a uniformly chosen random function at v0 is more than M + t is doubly...
متن کاملAn effective optimization algorithm for locally nonconvex Lipschitz functions based on mollifier subgradients
متن کامل
POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 22 شماره
صفحات -
تاریخ انتشار 2013